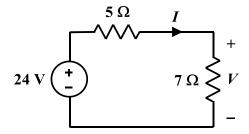
EE/EET 2240

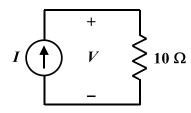
Final Exam


Thursday, June 21, 2018 LIBR B32, 8:00AM – 10:00AM

[open book – any printed materials or notes you want – and calculator allowed, nothing else]

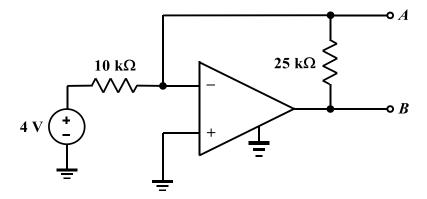
Choose any 5 of the following 6 problems to work for credit. Mark an "X" through the one you do not want graded. If you fail to do so, the first 5 will be graded – even if one of them is left blank.

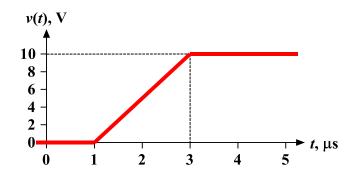
Work must be shown in a neat and orderly fashion if you expect to receive partial credit.

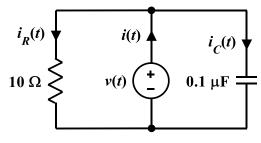

1. For the circuit shown:

(a) Determine the value of I.

(b) Determine the value of V.

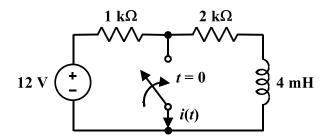

2. The resistor is absorbing 40 W.


(a) Determine the value of I.

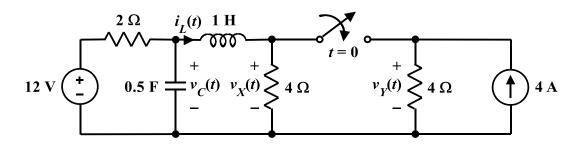

(b) Determine the value of V.

3. Determine and sketch the Thévenin equivalent with respect to terminals A-B. Assume the OpAmp is ideal.

4. The voltage of the independent source in the circuit below is given graphically.



(a) Accurately sketch and label the current through the capacitor, $i_{C}(t)$.


(b) Accurately sketch and label the current through the resistor, $i_{\scriptscriptstyle R}\big(t\big)$.

(c) Accurately sketch and label the current through the independent source, i(t).

5. After being in the configuration shown for a very long time, the switch is closed at t = 0. Determine i(t) for $t \ge 0$.

6. The circuit shown below has reached the DC steady-state prior to t = 0.

- (a) Determine the value of $v_C(0^-)$.
- (b) Determine the value of $i_L(0^-)$.
- (c) Determine the value of $v_X(0^-)$.
- (d) Determine the value of $v_Y(0^-)$.
- (e) Determine the value of $v_C(0^+)$.
- (f) Determine the value of $i_L(0^+)$.
- (g) Determine the value of $v_X(0^+)$.
- (h) Determine the value of $v_Y(0^+)$.
- (i) Determine the value of $v_c(\infty)$.
- (j) Determine the value of $i_L(\infty)$.
- (k) Determine the value of $v_X(\infty)$.
- (l) Determine the value of $v_{Y}(\infty)$.